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Abstract. Let G be a simple graph of order n. The domination polyno-

mial of G is the polynomial D(G, x) =
∑n
i=γ(G) d(G, i)xi, where d(G, i) is

the number of dominating sets of G of size i and γ(G) is the domination

number of G. In this paper we present some families of graphs whose

domination polynomials are unimodal.
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1. Introduction

Graph polynomials are a well-developed area useful for analyzing properties

of graphs. There are some polynomials such as chromatic polynomial, clique

polynomial, characteristic polynomial, Tutte polynomial and domination poly-

nomial associated to graphs. Also there are some graphs polynomials related to

a molecular graph (see [11]). In this paper we consider the domination polyno-

mial of a graph. Let G = (V,E) be a simple graph. For any vertex v ∈ V (G),

the open neighborhood of v is the set N(v) = {u ∈ V (G)|{u, v} ∈ E(G)} and

the closed neighborhood of v is the set N [v] = N(v)∪{v}. For a set S ⊆ V (G),

the open neighborhood of S is N(S) =
⋃
v∈S N(v) and the closed neighborhood

of S is N [S] = N(S) ∪ S. A set S ⊆ V (G) is a dominating set if N [S] = V
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or equivalently, every vertex in V (G)\S is adjacent to at least one vertex in

S. The domination number γ(G) is the minimum cardinality of a dominating

set in G. For a detailed treatment of these parameters, the reader is referred

to [16]. Let D(G, i) be the family of dominating sets of a graph G with car-

dinality i and let d(G, i) = |D(G, i)|. The domination polynomial D(G, x) of

G is defined as D(G, x) =
∑|V (G)|
i=γ(G) d(G, i)xi, where γ(G) is the domination

number of G (see [1, 8]). For example, since each non-empty subset of the

vertices of the complete graph Kn, is a dominating set of Kn, its domination

polynomial is then D(Kn, x) = (1 + x)n − 1. A root of D(G, x) is called a

domination root of G. Two graphs G and H are said to be dominating equiv-

alent, or simply D-equivalent, written G ∼ H, if D(G, x) = D(H,x). It is

evident that the relation ∼ of being D-equivalent is an equivalence relation on

the family G of graphs, and thus G is partitioned into equivalence classes, called

the D-equivalence classes. Given G ∈ G, let

[G] = {H ∈ G : H ∼ G}.

We call [G] the equivalence class determined by G. A graph G is said to be

dominating unique, or simply D-unique, if [G] = {G}.
For two graphs G = (V,E) and H = (W,F ), the corona G ◦H is the graph

arising from the disjoint union of G with |V | copies of H, by adding edges

between the ith vertex of G and all vertices of ith copy of H [12]. It is easy to

see that the corona operation is not commutative.

Let a0, a1, . . . , an be a sequence of nonnegative numbers. It is unimodal if

there is some m, called a mode of the sequence, such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an.

It is log-concave if a2k ≥ ak−1ak+1 for all 1 ≤ k ≤ n − 1. It is symmetric

if ak = an−k for 0 ≤ k ≤ n. A log-concave sequence of positive numbers is

unimodal (see, e.g., [9, 10, 19]). We say that a polynomial
∑n
k=0 akx

k is uni-

modal (log-concave, symmetric, respectively) if the sequence of its coefficients

a0, a1, . . . , an is unimodal (log-concave, symmetric, respectively). A mode of

the sequence a0, a1, . . . , an is also called a mode of the polynomial
∑n
k=0 akx

k.

Unimodality problems of graph polynomials have always been of great interest

to researchers in graph theory [7, 18]. There are a number of results concerning

the coefficients of independence polynomials, many of which consider graphs

formed by applying some sort of operation to simpler graphs. In [21], for in-

stance, Rosenfeld examines the independence polynomials of graphs formed by

taking various rooted products of simpler graphs. (See [14] for the definition of

the rooted product of two graphs.) In particular, he shows that the property

of having all real roots is preserved under forming rooted products. Mandrescu

in [20] has shown that the independence polynomial of corona product of any

graph with 2 copies of K1, i.e., I(G ◦ 2K1, x) is unimodal. Recently, Levit and
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Mandrescu in [19] generalized this result and have shown that if H = Kr − e,
r ≥ 2, then the polynomial I(G ◦ H,x) is unimodal and symmetric for every

graph G.

Although the unimodality of independence polynomial has been actively

studied, almost no attention has been given to the unimodality of domination

polynomials. It is conjectured that the domination polynomial of a graph is

unimodal (see [8]). This conjecture is still open, even for paths and cycles.

Regarding this conjecture, we have the following result:

Theorem 1.1. [8] Let G be a graph of order n. Then for every 0 ≤ i < n
2 , we

have d(G, i) ≤ d(G, i+ 1).

A clique cover of a graph G is a spanning subgraph of G, each component

of which is a clique. If Ω = {C1, C2, . . . , Cq} is a clique cover of G, construct a

new graph H from G, which is denoted by H = Ω{G} (see[18]), as follows: for

each clique C ∈ Ω, add two new non-adjacent vertices and join them to all the

vertices of C. Note that all old edge of G are kept in Ω{G}.

In the next section, we consider some specific graphs and show that their

domination polynomials are unimodal. In Section 3, we consider graphs of the

form Hn = Ω{Pn}, where Pn is the path of order n. We study the domi-

nation polynomial, domination roots and D-equivalence classes of Hn. As a

consequence, we show that D(Hn, x) is unimodal.

2. Unimodality of Domination Polynomials of Some Specific

Graphs

In this section, we consider some specific graphs constructed from products

with complete graphs and study the unimodality of their domination polyno-

mials. First we consider corona product. We need the following theorem which

provides a formula to compute the domination polynomial of corona products

of two graphs.

Theorem 2.1. [2, 17] Let G = (V,E) and H = (W,F ) be nonempty graphs of

order n and m, respectively. Then

D(G ◦H,x) = (x(1 + x)m +D(H,x))n.

We also need the following results:

Theorem 2.2. [22] Let f(x) and g(x) be polynomials with positive coefficients.

If both f(x) and g(x) are log-concave, then so is their product f(x)g(x).

The following corollary is an immediate consequence of the above theorem.

Corollary 2.3. If polynomials Pi(x) for i = 1, . . . , k with positive coefficients

are log-concave, then
∏k
i=1 Pi(x) is log-concave as well.
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The following theorem gives us many graphs whose domination polynomials

are unimodal:

Theorem 2.4. The domination polynomial of G ◦Kn is unimodal.

Proof. By theorem 2.1 we can deduce that for each arbitrary graph G,

D(G ◦Kn, x) =
(
x(1 + x)n + (x+ 1)n − 1

)|V (G)|

=
(

(1 + x)n+1 − 1
)|V (G)|

.

By Corollary 2.3, this polynomial is log-concave and therefore unimodal. �

The join G = G1 +G2 of two graphs G1 and G2 with disjoint vertex sets V1
and V2 and edge sets E1 and E2 is the graph union G1 ∪G2 together with all

the edges joining V1 and V2.

We need the following Theorems:

Theorem 2.5. [1] Let G1 and G2 be graphs of orders n1 and n2, respectively.

Then

D(G1 +G2, x) =
(

(1 + x)n1 − 1
)(

(1 + x)n2 − 1
)

+D(G1, x) +D(G2, x).

Theorem 2.6. [8] If a graph G consists of k connected components G1, . . . , Gk,

then D(G, x) =
∏k
i=1D(Gi, x).

The vertex contraction G/u of a graph G by a vertex u is the operation

under which all vertices in N(u) are joined to each other and then u is deleted

(see[23]). Note that G− v denotes the graph obtained from G by removing the

vertex v and all edges incident to v and G−N [v] denotes the graph obtained

by deleting all of the vertices in the closed neighborhood of v and the edges

incident to them.

The following theorem is useful for finding a recurrence relation for the

domination polynomials of graphs.

Theorem 2.7. [3, 17] Let G be a graph. For any vertex u in G we have

D(G, x) = xD(G/u, x) +D(G− u, x) + xD(G−N [u], x)− (1 + x)pu(G, x),

where pu(G, x) is the polynomial counting the dominating sets of G− u which

do not contain any vertex of N(u) in G.

Theorem 2.7 can be used to give a recurrence relation which removes trian-

gles. Analogously to [3, 17], we denote with G� u the graph obtained from G

by removing all edges between each pair of neighbors of u. Note that u is not

removed when forming G � u. The following recurrence relation is useful for

graphs which have many triangles.

Theorem 2.8. [3, 17] Let G be a graph and u ∈ V . Then

D(G, x) = D(G− u, x) +D(G� u, x)−D(G� u− u, x).
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Consider the friendship graphs Fn obtained by selecting one vertex in each

of n triangles and identifying all of them (Figure 1). They are sometimes called

Dutch-Windmill graphs [13, 24].

Figure 1. Friendship graphs F2, F3, F4 and Fn, respectively.

Since the friendship graph Fn is the join of K1 and n copies of K2, nK2, by

Theorem 2.5 we have the following theorem:

Theorem 2.9. [6] For every n ∈ N, D(Fn, x) = (2x+ x2)n + x(1 + x)2n.

Corollary 2.10. The domination polynomials of Fn are unimodal.

Proof. By Theorem 2.9 we have, D(Fn, x) = x[(1+x)2n+xn−1(x+2)n]. If n =

1, then D(F1, x) = x3 + 3x2 + 3x, which is unimodal. Now assume that n ≥ 2.

Let p(x) =
∑2n
i=0 pix

i = (1 + x)2n =
∑2n
i=0

(
2n
i

)
xi and q(x) =

∑2n−1
i=0 qix

i =

xn−1(x+ 2)n =
∑2n−1
i=0

(
n

i−n+1

)
22n−i−1xi. Note that p(x) and q(x) have 2n+ 1

and 2n terms, respectively and qi = 0, for 0 ≤ i ≤ n − 2. The polynomial

p(x) has an odd number of terms and is symmetric and unimodal. Also the

sequence of its coefficient has mode n. The polynomial q(x) is unimodal, and

the sequence of its coefficients has mode

k =


n− 1 + bn3 c; n ≡ 0 or n ≡ 1(mod 3)

n− 1 + bn3 c and n+ bn3 c; n ≡ 2(mod 3).

We have p(x) + q(x) =
∑2n
i=0(pi + qi)x

i. Since q0 = q1 = ... = qn−2 = 0,

the inequality pi + qi ≤ pi+1 + qi+1 is true for 0 ≤ i ≤ n − 2, because of

the unimodality of {pj}. Also the inequality pi + qi ≥ pi+1 + qi+1 is true for

k ≤ i ≤ 2n− 1. Because from the unimodality of coefficients of p(x) and q(x),

for i ≥ k, we have qi ≥ qi+1 and pi ≥ pi+1. To complete the proof of the

unimodality of p(x) + q(x), we shall prove the following inequalities:

(i) pn−1 + qn−1 ≤ pn + qn
(ii) pi + qi ≥ pi+1 + qi+1, for all n ≤ i ≤ k − 1.

Since
(

2n
n−1
)
−
(
2n
n

)
≤ (n − 2)2n−1, we have

(
2n
n−1
)

+ 2n ≤
(
2n
n

)
+ n2n−1, and

so the inequality (i) is true. Now, we prove the inequality (ii). We shall prove

that for n ≤ i ≤ k − 1, we have(
2n

i

)
+

(
n

i− n+ 1

)
22n−i−1 ≥

(
2n

i+ 1

)
+

(
n

i+ 2− n

)
22n−i−2.
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By an easy computation, we observe that, we have to prove the following

inequality for n ≤ i ≤ k − 1:

(2i− 2n+ 1)(2n)!

(2n− i)(i+ 1)!
≥ (4n− 3i− 5)n!

(i− n+ 2)!
22n−i−2. (2.1)

From the inequality (2.1), we obtain k − n inequality with one variable n. All

of these inequalities can be proved using induction on n. For example, here we

prove the inequalities (2.1) for i = n, i.e., we prove

an :=
(2n)!

n!(n+ 1)!
≥ 2n−3(n2 − 5n).

This inequality is true for n = 1, ..., 7. Since an+1 = 2(2n+1)
n+2 an, it suffices to

prove the following inequality:

2n+ 1

n+ 2
an ≥ 2n−3(n2 − 3n− 4).

By induction hypothesis we have 2n+1
n+2 an ≥

2n+1
n+2 2n−3(n2 − 5n), and hence we

shall prove 2n+1
n+2 (n2 − 5n) ≥ (n2 − 3n− 4). Since n3 − 8n2 + 5n+ 8 ≥ 0 is true

for every natural number n ≥ 7, so the proof is complete. �

Here we prove that the friendship graphs with an extra edge are unimodal.

Corollary 2.11. The graphs H = Fn+uv are unimodal, where u is the center

vertex of Fn (degree 2n) so that uv is a pendant edge.

Proof. We use Theorem 2.8 to obtain the domination polynomial of this kind

of graphs:

D(H,x) = D(H − u, x) +D(H � u, x)−D(H � u− u, x)

= D(nK2 ∪K1, x) +D(K1,2n+1, x)−D((2n+ 1)K1, x)

= x(2x+ x2)n + x2n+1 + x(1 + x)2n+1 − x2n+1

= x
(
(x2 + 2x)n + (x+ 1)2n+1

)
.

Therefore

D(H,x) =


x(x3 + 4x2 + 5x+ 1); n = 1,

x(x5 + 6x4 + 14x3 + 14x2 + 5x+ 1); n = 2.

For n ≥ 3, in analogy with the proof of Corollary 2.10, suppose that p(x) =∑2n+1
i=0 pix

i = (1 + x)2n+1 =
∑2n+1
i=0

(
2n+1
i

)
xi and q(x) = xn(x + 2)n =∑2n

i=0 qix
i =

∑2n
i=0

(
n
i−n
)
22n−ixi. We know that p(x) and q(x) have 2n + 2

and 2n + 1 terms, respectively. Also p(x) is symmetric and unimodal, the se-

quence of its coefficient has two modes n and n + 1. The polynomial q(x) is
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unimodal with qi = 0 for 0 ≤ i ≤ n− 1 and the sequence of its coefficients has

mode

k =


n+ bn3 c; n ≡ 0 or n ≡ 1(mod 3),

n+ bn3 c and n+ 1 + bn3 c; n ≡ 2(mod 3).

We have

p(x) + q(x) = p0 + p1x+ · · ·+ pn−1x
n−1 + (pn + qn)xn + (pn + qn+1)xn+1

+ (pn−1 + qn+2)xn+2 + · · ·+ (p1 + q2n)x2n + p0x
2n+1.

The proof of unimodality of p(x) + q(x) is exactly the same of proof of uni-

modality of p(x) + q(x) in Corollary 2.10. �

The reader is able to see the sequence of coefficients of D(Fn + uv, x) in the

site “The on-line encyclopedia of integer sequences” [25] as A213658.

3. Unimodality of Domination Polynomial of a Family of Graphs

In this section, we investigate the domination polynomial of a family of

graphs. First we recall the definition of clique cover of a graph. A clique

cover of a graph G is a spanning subgraph of G, each component of which is a

clique. If Ω = {C1, C2, . . . , Cq} is a clique cover of G, construct a new graph

H from G, which is denoted by H = Ω{G} (see[18]), as follows: for each clique

C ∈ Ω, add two new non-adjacent vertices and join them to all the vertices

of C. Note that all old edge of G are kept in Ω{G}. We consider graphs

of the form Hn = Ω{Pn}, which constructed from the path Pn with vertex

set {1, ..., n}, by the clique cover construction. Note that in Hn = Ω{Pn}
(Figure 2), for even n, Ω = {{1, 2}, {3, 4}, ..., {n − 1, n}}, and for odd n, Ω =

{{1, 2}, {3, 4}, ..., {n−2, n−1}, {n}}. By H0 we mean the null graph. We shall

study the domination polynomial of Hn.

H2n+1

w

H2n

w

Figure 2. Graphs H2n+1 and H2n, respectively.

The domination polynomial of an arbitrary graph satisfies a recurrence re-

lation which is based on the edge and vertex elimination operations. As usual

G− e denotes the graph obtained from G by removal of edge e. The following

recurrence uses composite operations, e.g. G−e/u, which stands for (G−e)/u.
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Theorem 3.1. [17] Let G be a graph. For every edge e = {u, v} ∈ E,

D(G, x) = D(G− e, x) +
x

x− 1

[
D(G− e/u, x) +D(G− e/v, x)

− D(G/u, x)−D(G/v, x)−D(G−N [u], x)−D(G−N [v], x)

+ D(G− e−N [u], x) +D(G− e−N [v], x)
]
.

The following theorem gives recurrence relations for the domination polyno-

mial of Hn.

Theorem 3.2. For every n ∈ N,

(i) D(H2n+1, x) = (x3 + 3x2 + x)D(H2n, x),

(ii) D(H2n, x) = (x+ 1)D(H2n−1, x) + (2x2 + x)D(H2n−2, x),

where D(H0, x) = 1, D(H1, x) = x3+3x2+x and D(H2, x) = x4+4x3+6x2+2x.

Proof. (i) Consider graph H2n+1 as shown in Figure 2. By Theorem 2.7 we

have:

D(H2n+1, x) = xD(H2n+1/w, x)+D(H2n+1−w, x)+xD(H2n+1−N [w], x)−
(1 + x)pw(H2n+1, x)

= xD(H2n+1/w, x)+D(H2n+1−w, x)+xD(H2n∪K1, x)−(1+x)pw(H2n+1, x).

Since H2n+1/w is isomorphic to H2n+1 − w, we have:

D(H2n+1, x) = (x+ 1)D(H2n+1/w, x) +x2D(H2n, x)− (1 +x)pw(H2n+1, x).

u v
e

v

Figure 3. Graphs H2n+1/w and (H2n+1/w)− u, respectively.

Now we use Theorems 2.6 and 3.1 to obtain the domination polynomial of

the graph H2n+1/w (see Figure 3). We have D(H2n+1/w, x) = xD(H ′, x) +

x[D(H2n, x) + D(H2n−1, x)], where H ′ = (H2n+1/w) − u, as shown in Fig-

ure 3. Using Theorem 2.7 we deduce that, D(H ′, x) = (x + 1)D(H2n, x) −
D(H2n−1, x). Note that in this case pv(H

′, x) = D(H2n−1, x). Also it is clear

that pw(H2n+1, x) = xD(H2n, x). Consequently,

D(H2n+1, x) = (x+ 1)
[
x[(x+ 1)D(H2n, x)−D(H2n−1, x)] + x[D(H2n, x) +

D(H2n−1, x)]
]

+ x2D(H2n, x)− (1 + x)xD(H2n, x)

= (x3 + 3x2 + x)D(H2n, x).

(ii) Now consider graph H2n as shown in Figure 2. We use Theorem 2.7

to compute D(H2n, x). Note that in this case pw(H2n, x) = 0. D(H2n, x) =
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xD(H2n/w, x) + D(H2n − w, x) + xD(H2n − N [w], x) − (1 + x)pw(H2n, x) =

xD(H2n/w, x) +D(H2n−1, x) + xD(H2n−2, x)

= x[D(H2n−1, x) + 2xD(H2n−2, x)] +D(H2n−1, x) + xD(H2n−2, x)

= (x+ 1)D(H2n−1, x) + (2x2 + x)D(H2n−2, x).

u

v

e

Figure 4. Graph H2n/w.

Note that in the third equality, since (H2n/w) − e = H2n−1, D((H2n/w) −
e/u, x) = D((H2n/w)/u, x), D((H2n/w) − e/v, x) = D((H2n/w)/v, x), and

D((H2n/w)−e−N [u], x) = D((H2n/w)−e−N [v], x) = D(H2n−2∪K1, x) (see

Figure 4), using Theorems 2.6 and 3.1, we have D(H2n/w, x) = D(H2n−1, x) +

2xD(H2n−2, x). �

By Theorem 3.2 we have the following corollary which gives formula for the

domination polynomials of Hn graphs:

Corollary 3.3. Suppose that Hn are graphs in the Figure 2. we have:

(i) For every n ∈ N, D(H2n, x) = (x4 + 4x3 + 6x2 + 2x)n.

(ii) For every n ∈ N, D(H2n+1, x) = (x3 + 3x2 + x)(x4 + 4x3 + 6x2 + 2x)n.

Proof. (i) By Parts (i) and (ii) of Theorem 3.2:

D(H2n, x) = (1 + x)(x3 + 3x2 + x)D(H2n−2, x) + (2x2 + x)D(H2n−2, x)

=
[
(1 + x)(x3 + 3x2 + x) + (2x2 + x)

]
D(H2n−2, x)

= (x4 + 4x3 + 6x2 + 2x)D(H2n−2, x)

= D(H2, x)D(H2n−2, x)

= (D(H2, x))n

= (x4 + 4x3 + 6x2 + 2x)n.

(ii) It follows from Part (i) and Theorem 3.2(i). �

Corollary 3.4. For every n ∈ N, the domination polynomials of Hn are uni-

modal.

Proof. It is clear that D(H1, x) and D(H2, x) are both log-concave. So we have

the result by Corollaries 2.3 and 3.3. �

In the rest of paper, we will consider the domination roots and D-equivalence

classes of Hn .
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Theorem 3.5. (i) For each natural number n, the graph H2n is not D-

unique.

(ii) For each natural number n, the graph H2n+1 is not D-unique.

Proof. (i) Let G be the graph of order 4 in Figure 5. It is easy to see

that D(G, x) = x4 + 4x3 + 6x2 + 2x. If H = ∪ni=1G, then D(H,x) =

(x4 + 4x3 + 6x2 + 2x)n = D(H2n, x).

(ii) Let H be the graph in the proof of Part (i). Here we consider the graph

P3 ∪H. We see that D(H2n+1, x) = D(P3 ∪H,x). Therefore we have

the result.

�

Figure 5. Graph H in the proof of Theorem 3.5.

The characterization of graphs for which certain polynomials have few dis-

tinct roots has been of interest to researchers in graph theory [5, 15]. By

Corollary 3.3, we see that the domination polynomial of Hn has few roots.

Corollary 3.6. For every n ∈ N,

(i) Z(D(H2n, x)) = Z(D(H2, x)).

(ii) Z(D(H2n+1, x)) = Z(D(H1, x)) ∪ Z(D(H2, x)).

Remark 3.7. Since Z(D(H1, x)) =
{

0, −3±
√
5

2

}
and Z(D(H2, x)) =

{
0, 13 (17 +

3
√

33)
1
3 − 2

3(17+3
√
33)

1
3
− 4

3 ,−
1
6 (17 + 3

√
33)

1
3 + 1

3(17+3
√
33)

1
3
− 4

3 ± i
√
3
2

(
1
3 (17 +

3
√

33)
1
3 + 2

3(17+3
√
33)

1
3

)}
, the graphs H2n and H2n+1 have four and six distinct

roots, respectively. We denote the four domination roots of H2 by {0, α, β±γi}.

Characterization of graphs with exactly one, two and three distinct dom-

ination roots has been done in [1]. Also, in [4, 5] the authors characterized

graphs with exactly four distinct domination roots {−2, 0, −3±
√
5

2 }. There are

two interesting open problems in this area:

(i) Which numbers can be roots of graphs with exactly four distinct dom-

ination roots?

(ii) Characterize all graphs with exactly four distinct domination roots

[4, 5].

We have proved that H2n has four distinct domination roots. We now con-

struct a sequence of graphs with having exactly four distinct domination roots.
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Theorem 3.8. Every graph H in the family {G ◦ P3, (G ◦ P3) ◦ P3, ((G ◦ P3) ◦
P3) ◦ P3, · · · } have four distinct domination roots, which are {0, α, β ± γi}.

Proof. By theorem 2.1 we can deduce that for each arbitrary graph G,

D(G ◦ P3, x) =
(
x(1 + x)3 +D(P3, x)

)|V (G)|

= (x(1 + x)3 + x3 + 3x2 + x)|V (G)|

=
(
x(x3 + 4x2 + 6x+ 2)

)|V (G)|

=
(
D(H2, x))

)|V (G)|
.

So the set of domination roots of G ◦ P3 is Z(D(H2, x)). Therefore the result

follows. �

The following corollary is an immediate consequence of the above theorem.

Corollary 3.9. For every graph G, G ◦ P3 is not D-unique.

Proof. If H = ∪|V (G)|
i=1 H2, then D(H,x) = (x4 + 4x3 + 6x2 + 2x)|V (G)| = D(G ◦

P3, x). Therefore we have the result. �

Acknowledgments

The authors would like to express their gratitude to the referees for their

careful reading and helpful comments.

References

1. S. Akbari, S. Alikhani, Y.H. Peng, Characterization of graphs using domination polyno-

mial, Europ. J. Combin., 31, (2010), 1714-1724.

2. S. Alikhani, On the domination polynomial of some graph operations, ISRN Combin.,

2013, Article ID 146595, 3 pages.

3. S. Alikhani, On the domination polynomials of non P4-free graphs, Iran. J. Math. Sci.

Inform., 8(2), (2013), 49–55.

4. S. Alikhani, On the graphs with four distinct domination roots, Int. J. Comp. Math.,

88(13), (2011), 2717-2720.

5. S. Alikhani, Graphs whose their certain polynomials have few distinct roots, ISRN Dis-

crete Math., 2013, Article ID 195818, 8 pages.

6. S. Alikhani, J.I. Brown, S. Jahari, On the domination polynomials of friendship graphs,

Filomat, 30(1), (2016), 169-178.

7. S. Alikhani, F. Jafari, On the unimodality of independence polynomial of certain classes

of graphs, Trans. Combin., 2(3), (2013), 33–41.

8. S. Alikhani, Y.H. Peng, Introduction to domination polynomial of a graph, Ars Combin.,

114, (2014), 257-266.

9. F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry:

An update, Contemp. Math. 178, (1994), 417-441.

10. F. Brenti, Unimodal, log-concave, and Pólya frequency sequences in combinatorics, Mem.

Amer. Math. Soc., 413, (1989).



80 S. Alikhani, S. Jahari

11. G. H. Fath-Tabar, A. R. Ashra, The Hyper-Wiener polynomial of graphs, Iran. J. Math.

Sci. Inform., 6(2), (2011), 67–74.

12. R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math., 4, (1970), 322–

325.

13. J.A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin. 16, (2013), #DS6.

14. C.D. Godsil, B.D. McKay, A new graph product and its spectrum, Bull. Austral. Math.

Soc., 18, (1978), 21-28.

15. E. Ghorbani, Graphs with few matching roots, Graphs and Combin., 29(5), (2013),

1377–1389.

16. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Mar-

cel Dekker, NewYork, 1998.

17. T. Kotek, J. Preen, F. Simon, P. Tittmann, M. Trinks, Recurrence relations and splitting

formulas for the domination polynomial, Elec. J. Combin., 19(3), (2012), # P47.

18. V.E. Levit, E. Mandrescu, A family of graphs whose independence polynomials are both

palindromic and unimodal, Carpathian J. Math., 23, (2007), 108-116.

19. V.E. Levit, E. Mandrescu, On the independence polynomial of the corona of graphs, Disc

Appl. Math., (2015), http://doi:10.1016/j.dam.2015.09.021.

20. E. Mandrescu, Unimodality of some independence polynomials via their palindromicity,

Australasian J. Combin., 53, (2012), 77-82.

21. V.R. Rosenfeld, The independence polynomial of rooted products of graphs, Disc. Appl.

Math., 158, (2010), 551-558.

22. R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics and geom-

etry, Ann. New York Acad. Sci., 576, (1989), 500-534.

23. M. Walsh, The hub number of a graph, Int. J. Math. Comput. Sci., 1, (2006), 117-124.

24. http://mathworld.wolfram.com/DutchWindmillGraph.html

25. The On-Line Encyclopedia of Integer Sequences. http://oeis.org, 2012.


